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The problem

Proposition

Every injective linear operator T : Rn −→ Rn is surjective.

Question (Häıly, Kaidi, Rodŕıguez-Palacios)

Is there an infinite dimensional Banach space X such that every
injective operator T : X −→ X is surjective?
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The problem

Spaces with few operators, like Gowers-Maurey, satisfy:

1 Every surjective operator T : X −→ X is injective.

2 Every injective operator T : X −→ X with closed range is
surjective.

However, if

{en} is a basis of subspace of X , ‖en‖= 2−n.

{f ∗n } ⊂ X ∗ is weak∗ dense of norm-one operators,

Then T (x) = ∑n f
∗
n (x)en defines an injective operator which is not

surjective.

Theorem

There exists a compact space K such that every injective operator
T : C (K )−→ C (K ) is surjective.
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Looking for a compact space

In every space C (K ), for every f ∈ C (K ), we have the
multiplication operator Tf (g) = f ·g .

1 Tf is injective iff f −1(0) has empty interior.

2 Tf is bijective iff f −1(0) = /0.

Therefore,

Our space K must be an almost P-space

: every nonempty zero set
has nonempty interior.

If K = Stone(B), this means that every decreasing sequence
a1 > a2 > · · · in B fails to have an infimum.
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So, we need that every surjective h : K −→ K is bijective.
However, killing all non-constant h : K −→ K is not enough to
control all operators C (K )−→ C (K ). For this, we need K to be a
Koszmider space.
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K is a Koszmider space if every operator C (K )−→ C (K ) is a
weak multiplier.

Weak multipliers

An operator T : C (K )−→ C (K ) is a weak multiplier if

for every
disjoint sequence of functions {en} ⊂ C (K ) and points xn ∈ K with
en(xn) = 0, then T (en)(xn)−→ 0.

Weak multiplications (stronger notion)

An operator T : C (K )−→ C (K ) is a weak multiplication if
T = Tg +S where g ∈ C (K ), S is weakly compact.
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Koszmider spaces

Schlackow’s approach to Koszmider spaces

Let B be a Boolean algebra such that

for every pairwise disjoint family {an}∪{bn},

there exists
infinite τ ⊂ ω such that

supn∈τ an exists,
{bn : n ∈ τ} and {bn : n 6∈ τ} are not separated.

Then Stone(B) is a Koszmider space.

The almost P-space condition is incompatible with countable
suprema to exist in B.
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Our space

Theorem

There exists K = Stone(B) that is a Koszmider space and an
almost P-space. Every injective T : C (K )−→ C (K ) is surjective.


