A new space C(K) with few operators

Antonio Avilés (joint work with P. Koszmider)

Universidad de Murcia, Author supported by MEyC and FEDER under project MTM2011- 25377

Hejnice 2013

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Proposition

Every injective linear operator $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is surjective.

Proposition

Every injective linear operator $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is surjective.

Question (Haïly, Kaidi, Rodríguez-Palacios)

Is there an infinite dimensional Banach space X such that every injective operator $T: X \longrightarrow X$ is surjective?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Spaces with few operators, like Gowers-Maurey, satisfy:

Spaces with few operators, like Gowers-Maurey, satisfy:

• Every surjective operator $T: X \longrightarrow X$ is injective.

Spaces with few operators, like Gowers-Maurey, satisfy:

- Every surjective operator $T: X \longrightarrow X$ is injective.
- ② Every injective operator T : X → X with closed range is surjective.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Spaces with few operators, like Gowers-Maurey, satisfy:

- Every surjective operator $T: X \longrightarrow X$ is injective.
- ② Every injective operator T : X → X with closed range is surjective.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

However, if

Spaces with few operators, like Gowers-Maurey, satisfy:

- Every surjective operator $T : X \longrightarrow X$ is injective.
- ② Every injective operator T : X → X with closed range is surjective.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

However, if

• $\{e_n\}$ is a basis of subspace of X, $||e_n|| = 2^{-n}$.

Spaces with few operators, like Gowers-Maurey, satisfy:

- Every surjective operator $T: X \longrightarrow X$ is injective.
- ② Every injective operator T : X → X with closed range is surjective.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

However, if

- $\{e_n\}$ is a basis of subspace of X, $||e_n|| = 2^{-n}$.
- $\{f_n^*\} \subset X^*$ is weak^{*} dense of norm-one operators,

Spaces with few operators, like Gowers-Maurey, satisfy:

- Every surjective operator $T: X \longrightarrow X$ is injective.
- ② Every injective operator T : X → X with closed range is surjective.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

However, if

- $\{e_n\}$ is a basis of subspace of X, $||e_n|| = 2^{-n}$.
- $\{f_n^*\} \subset X^*$ is weak* dense of norm-one operators, Then $T(x) = \sum_n f_n^*(x) e_n$

Spaces with few operators, like Gowers-Maurey, satisfy:

- Every surjective operator $T: X \longrightarrow X$ is injective.
- ② Every injective operator T : X → X with closed range is surjective.

However, if

- $\{e_n\}$ is a basis of subspace of X, $||e_n|| = 2^{-n}$.
- $\{f_n^*\} \subset X^*$ is weak^{*} dense of norm-one operators,

Then $T(x) = \sum_n f_n^*(x)e_n$ defines an injective operator which is not surjective.

Spaces with few operators, like Gowers-Maurey, satisfy:

- Every surjective operator $T: X \longrightarrow X$ is injective.
- ② Every injective operator T : X → X with closed range is surjective.

However, if

- $\{e_n\}$ is a basis of subspace of X, $||e_n|| = 2^{-n}$.
- $\{f_n^*\} \subset X^*$ is weak^{*} dense of norm-one operators,

Then $T(x) = \sum_{n} f_{n}^{*}(x)e_{n}$ defines an injective operator which is not surjective.

Theorem

There exists a compact space K such that every injective operator $T: C(K) \longrightarrow C(K)$ is surjective.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

• T_f is injective iff $f^{-1}(0)$ has empty interior.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- T_f is injective iff $f^{-1}(0)$ has empty interior.
- 2 T_f is bijective iff $f^{-1}(0) = \emptyset$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- T_f is injective iff $f^{-1}(0)$ has empty interior.
- 2 T_f is bijective iff $f^{-1}(0) = \emptyset$.

Therefore,

Our space K must be an almost P-space

- T_f is injective iff $f^{-1}(0)$ has empty interior.
- 2 T_f is bijective iff $f^{-1}(0) = \emptyset$.

Therefore,

Our space K must be an almost P-space: every nonempty zero set has nonempty interior.

- T_f is injective iff $f^{-1}(0)$ has empty interior.
- 2 T_f is bijective iff $f^{-1}(0) = \emptyset$.

Therefore,

Our space K must be an almost P-space: every nonempty zero set has nonempty interior.

If K = Stone(B), this means that every decreasing sequence $a_1 > a_2 > \cdots$ in B fails to have an infimum.

1 S_h is injective iff *h* is surjective

- **1** S_h is injective iff *h* is surjective
- **2** S_h is bijective iff *h* is bijective

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- **1** S_h is injective iff *h* is surjective
- **2** S_h is bijective iff *h* is bijective
- So, we need that every surjective $h: K \longrightarrow K$ is bijective.

- **1** S_h is injective iff *h* is surjective
- **2** S_h is bijective iff *h* is bijective

So, we need that every surjective $h: K \longrightarrow K$ is bijective. However, killing all non-constant $h: K \longrightarrow K$ is not enough to control all operators $C(K) \longrightarrow C(K)$. For this, we need K to be a Koszmider space.

◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Weak multipliers

An operator $T: C(K) \longrightarrow C(K)$ is a weak multiplier if

Weak multipliers

An operator $T : C(K) \longrightarrow C(K)$ is a weak multiplier if for every disjoint sequence of functions $\{e_n\} \subset C(K)$ and

Weak multipliers

An operator $T : C(K) \longrightarrow C(K)$ is a weak multiplier if for every disjoint sequence of functions $\{e_n\} \subset C(K)$ and points $x_n \in K$ with $e_n(x_n) = 0$,

Weak multipliers

An operator $T : C(K) \longrightarrow C(K)$ is a weak multiplier if for every disjoint sequence of functions $\{e_n\} \subset C(K)$ and points $x_n \in K$ with $e_n(x_n) = 0$, then $T(e_n)(x_n) \longrightarrow 0$.

Weak multipliers

An operator $T : C(K) \longrightarrow C(K)$ is a weak multiplier if for every disjoint sequence of functions $\{e_n\} \subset C(K)$ and points $x_n \in K$ with $e_n(x_n) = 0$, then $T(e_n)(x_n) \longrightarrow 0$.

Weak multiplications (stronger notion)

An operator $T : C(K) \longrightarrow C(K)$ is a weak multiplication if T = Tg + S where $g \in C(K)$, S is weakly compact.

Let B be a Boolean algebra such that

• for every pairwise disjoint family $\{a_n\} \cup \{b_n\}$,

(日) (同) (E) (E) (E)

Let B be a Boolean algebra such that

for every pairwise disjoint family {a_n} ∪ {b_n}, there exists infinite τ ⊂ ω such that

(日) (同) (E) (E) (E)

Let ${\cal B}$ be a Boolean algebra such that

for every pairwise disjoint family {a_n} ∪ {b_n}, there exists infinite τ ⊂ ω such that

・ロト ・四ト ・ヨト ・ヨト - ヨ

• $\sup_{n \in \tau} a_n$ exists,

Let B be a Boolean algebra such that

for every pairwise disjoint family {a_n} ∪ {b_n}, there exists infinite τ ⊂ ω such that

- $\sup_{n \in \tau} a_n$ exists,
- $\{b_n : n \in \tau\}$ and $\{b_n : n \notin \tau\}$ are not separated.

Let ${\cal B}$ be a Boolean algebra such that

for every pairwise disjoint family {a_n} ∪ {b_n}, there exists infinite τ ⊂ ω such that

(日) (同) (E) (E) (E)

- $\sup_{n \in \tau} a_n$ exists,
- $\{b_n : n \in \tau\}$ and $\{b_n : n \notin \tau\}$ are not separated.

Then Stone(B) is a Koszmider space.

Let ${\cal B}$ be a Boolean algebra such that

- for every pairwise disjoint family {a_n} ∪ {b_n}, there exists infinite τ ⊂ ω such that
 - $\sup_{n \in \tau} a_n$ exists,
 - $\{b_n : n \in \tau\}$ and $\{b_n : n \notin \tau\}$ are not separated.

Then Stone(B) is a Koszmider space.

The almost P-space condition is incompatible with countable suprema to exist in B.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Let B be a Boolean algebra such that

<ロ> (四) (四) (三) (三) (三) (三)

Let B be a Boolean algebra such that for every $\{a_n\}$

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\varphi : A \subset \mathscr{P}(\omega) \longrightarrow B$ such that

イロト (部) (日) (日) (日) (日)

•
$$\varphi(\{n\}) = a_n$$
,

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\varphi : A \subset \mathscr{P}(\omega) \longrightarrow B$ such that

イロト (部) (日) (日) (日) (日)

•
$$\varphi(\{n\}) = a_n$$
,

• For every $\{b_n\}$,

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\varphi : A \subset \mathscr{P}(\omega) \longrightarrow B$ such that

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○

•
$$\varphi(\{n\}) = a_n$$
,

• For every $\{b_n\}$, there exists infinite $\tau \subset \omega$ such that

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\varphi : A \subset \mathscr{P}(\omega) \longrightarrow B$ such that

(ロ) (四) (三) (三) (三)

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\varphi : A \subset \mathscr{P}(\omega) \longrightarrow B$ such that

•
$$\varphi(\{n\}) = a_n$$
,

• For every $\{b_n\}$, there exists infinite $\tau \subset \omega$ such that

•
$$au\in A$$
,

• $\{b_n : n \in \tau\}$ and $\{b_n : n \notin \tau\}$ are not separated.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Let B be a Boolean algebra such that for every $\{a_n\}$ there exists a morphism $\varphi : A \subset \mathscr{P}(\omega) \longrightarrow B$ such that

•
$$\varphi(\{n\}) = a_n$$
,

• For every $\{b_n\}$, there exists infinite $\tau \subset \omega$ such that

- $au\in A$,
- $\{b_n : n \in \tau\}$ and $\{b_n : n \notin \tau\}$ are not separated.

イロト (部) (日) (日) (日) (日)

Then Stone(B) is a Koszmider space.

Theorem

There exists K = Stone(B) that is a Koszmider space and an almost *P*-space. Every injective $T : C(K) \longrightarrow C(K)$ is surjective.